Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.115
Filtrar
1.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611939

RESUMO

Biosynthesized silver nanoparticles (AgNPs) are widely used in varied applications, which are morphology dependent. Consequently, a morphology-controlled synthesis is mandatory. Although there are several studies focused on the plant extract-based biosynthesis of metallic nanoparticles, the use of extracts obtained from agro-wastes is scant. Furthermore, information regarding morphology modification through the use of additional agents is even more scarce. Thus, in this study, AgNPs were synthesized using a malt extract (ME) obtained from an artisanal beer brewing process residue. Additionally, sodium chloride (NaCl), gum arabic (GA), and talc (T) were used in an attempt to modify the morphology of AgNPs. XRD, DLS, SEM, and TEM results demonstrate that stable AgNPs of different sizes and shapes were synthesized. FTIR, HPLC analysis, and the quantification of total proteins, free amino acids, reducing sugars, and total polyphenols before and after AgNPs synthesis showed that ME biomolecules allowed them to act as a source of reducing and stabilizing agents. Therefore, this study provides evidence that ME can be successfully used to biosynthesize AgNPs. Additionally, the antibacterial activity of AgNPs against Gram-negative and Gram-positive bacteria was evaluated. Results indicate that AgNPs show a higher antibacterial activity against Gram-positive bacteria.


Assuntos
Acacia , Nanopartículas Metálicas , Cerveja , Prata , Antibacterianos/farmacologia , Cloreto de Sódio
2.
Food Res Int ; 184: 114256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609234

RESUMO

Mycotoxins are important risk factors in beer. In this study, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to determine 10 mycotoxins in beer within 6 min. The method is fast, efficient, and has a simple and quick sample preparation. Validation was conducted based on the performance standards specified in Commission Decision 657/2002/EC, and the results demonstrated excellent linearity (R2 > 0.99), repeatability (RSD < 5 %), quantification limits (0.005-20.246 µg/L), and recovery rates (77 %-118 %). The prevalence of the 10 mycotoxins in 96 beers purchased from the Chinese market was analyzed, and the exposure of the Chinese population to mycotoxins through beer consumption was assessed. Deoxynivalenol (DON) was detected in 93.75 % of the beers, and the incidence of fumonisins (FBs) and zearalenone (ZEN) exceeded 50 %. Beer intake contributed significantly to the exposure of aflatoxins (AFs) and DON, especially in males. Correlation analysis between mycotoxin content in beer, raw materials, and the brewing process revealed that the brewing process significantly affected the content of DON (P < 0.001), while auxiliary materials also had a significant impact on the content of FBs and DON (P < 0.001). This study holds great significance in producing higher quality and safer beer.


Assuntos
Aflatoxinas , Micotoxinas , Masculino , Humanos , Cerveja , Cromatografia Líquida , Espectrometria de Massas em Tandem
3.
Food Microbiol ; 121: 104520, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637082

RESUMO

Sequence-based analysis of fermented foods and beverages' microbiomes offers insights into their impact on taste and consumer health. High-throughput metagenomics provide detailed taxonomic and functional community profiling, but bacterial and yeast genome reconstruction and mobile genetic elements tracking are to be improved. We established a pipeline for exploring fermented foods microbiomes using metagenomics coupled with chromosome conformation capture (Hi-C metagenomics). The approach was applied to analyze a collection of spontaneously fermented beers and ciders (n = 12). The Hi-C reads were used to reconstruct the metagenome-assembled genomes (MAGs) of bacteria and yeasts facilitating subsequent comparative genomic analysis, assembly scaffolding and exploration of "plasmid-bacteria" links. For a subset of beverages, yeasts were isolated and characterized phenotypically. The reconstructed Hi-C MAGs primarily belonged to the Lactobacillaceae family in beers, along with Acetobacteraceae and Enterobacteriaceae in ciders, exhibiting improved quality compared to conventional metagenomic MAGs. Comparative genomic analysis of Lactobacillaceae Hi-C MAGs revealed clustering by niche and suggested genetic determinants of survival and probiotic potential. For Pediococcus damnosus, Hi-C-based networks of contigs enabled linking bacteria with plasmids. Analyzing phylogeny and accessory genes in the context of known reference genomes offered insights into the niche specialization of beer lactobacilli. The subspecies-level diversity of cider Tatumella spp. was disentangled using a Hi-C-based graph. We obtained highly complete yeast Hi-C MAGs primarily represented by Brettanomyces and Saccharomyces, with Hi-C-facilitated chromosome-level genome assembly for the former. Utilizing Hi-C metagenomics to unravel the genomic content of individual species can provide a deeper understanding of the ecological interactions within the food microbiome, aid in bioprospecting beneficial microorganisms, improving quality control and improving innovative fermented products.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Cerveja/microbiologia , Bactérias/genética , Plasmídeos , Saccharomyces/genética , Metagenoma , Metagenômica , Enterobacteriaceae/genética
4.
BMC Public Health ; 24(1): 788, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481169

RESUMO

Light and moderate alcohol use has been reported to be associated with both impaired and enhanced cognition. The purpose of this study was to explore whether there was a linear relationship between visual memory and alcohol consumption in males and females in a large middle-aged birth cohort population in cross-sectional and longitudinal settings. Data were collected from 5585 participants completing 31-year (1997-1998) and 46-year (2012-2014) follow-ups including Paired Associate Learning (PAL) test at 46-years follow-up. The participants were originally from 12,231 study population of the Northern Finland Birth Cohort 1966 (NFBC1966). The PAL test was conducted to assess visual memory. Reported alcohol use was measured as total daily use of alcohol, beer, wine, and spirits converted into grams and as frequency and amount of use of beer, wine, and spirits. The total daily alcohol use was not associated with reduced visual memory. The frequency of use of beer and wine in males was associated with better visual memory in cross-sectional and longitudinal settings. Using six or more servings of spirits was associated with worse visual memory in males in cross-sectional and longitudinal settings. Using six or more servings of spirits was associated with worse visual memory in males in cross-sectional and longitudinal setting. The study suggested a lack of a linear association between drinking and visual memory in the middle-aged population.


Assuntos
Consumo de Bebidas Alcoólicas , Vinho , Pessoa de Meia-Idade , Masculino , Feminino , Humanos , Consumo de Bebidas Alcoólicas/epidemiologia , Coorte de Nascimento , Estudos Transversais , Bebidas Alcoólicas , Cerveja
5.
Nat Commun ; 15(1): 2368, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531860

RESUMO

The perception and appreciation of food flavor depends on many interacting chemical compounds and external factors, and therefore proves challenging to understand and predict. Here, we combine extensive chemical and sensory analyses of 250 different beers to train machine learning models that allow predicting flavor and consumer appreciation. For each beer, we measure over 200 chemical properties, perform quantitative descriptive sensory analysis with a trained tasting panel and map data from over 180,000 consumer reviews to train 10 different machine learning models. The best-performing algorithm, Gradient Boosting, yields models that significantly outperform predictions based on conventional statistics and accurately predict complex food features and consumer appreciation from chemical profiles. Model dissection allows identifying specific and unexpected compounds as drivers of beer flavor and appreciation. Adding these compounds results in variants of commercial alcoholic and non-alcoholic beers with improved consumer appreciation. Together, our study reveals how big data and machine learning uncover complex links between food chemistry, flavor and consumer perception, and lays the foundation to develop novel, tailored foods with superior flavors.


Assuntos
Cerveja , Percepção Gustatória , Cerveja/análise , Aprendizado de Máquina , Comportamento do Consumidor , Paladar
6.
Waste Manag ; 180: 23-35, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503031

RESUMO

Beer is among the most popular beverages in the world, with the production distributed uniformly between the biggest continents, so the utilization of brewing by-products is essential on a global scale. Among their potential recipients, the plastics industry offers extensive range of potential products. Herein, the presented study investigated the application of currently underutilized solid brewing by-products (brewers' spent grain, spent hops, spent yeast) as fillers for highly-filled poly(ε-caprolactone)-based composites, providing the first direct connection between spent hops or spent yeast and the polymer composites. Comprehensive by-product characterization revealed differences in chemical composition. The elemental C:O ratio, protein content, and Trolox equivalent antioxidant capacity varied from 1.40 to 1.89, 12.9 to 32.4 wt%, and 2.41 to 10.24 mg/g, respectively, which was mirrored in the composites' structure and performance. Morphological analysis pointed to the composition-driven hydrophilicity gap limiting interfacial adhesion for high shares of brewers' spent grain and spent hops, due to high hydrophilicity induced by carbohydrate content. Phytochemicals and other components of applied by-products stimulated composites' oxidative resistance, shifting oxidation onset temperature from 261 °C for matrix over 360 °C for high spent yeast shares. Simultaneously, spent yeast also provided compatibilizing effects for poly(ε-caprolactone)-based composites, reducing complex viscosity compared to other fillers and indicating its highest affinity to poly(ε-caprolactone)due to the lowest hydrophilicity gap. The presented results indicate that the proper selection of brewing by-products and adjustment of their shares creates an exciting possibility of engineering composites' structure and performance, which can be transferred to other polymers differing with hydrophilicity.


Assuntos
Humulus , Saccharomyces cerevisiae , Cerveja , Polímeros , Carboidratos/análise , Grão Comestível/química
7.
Appl Environ Microbiol ; 90(4): e0186923, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38446583

RESUMO

The production of gueuze beers through refermentation and maturation of blends of lambic beer in bottles is a way for lambic brewers to cope with the variability among different lambic beer batches. The resulting gueuze beers are more carbonated than lambic beers and are supposed to possess a unique flavor profile that varies over time. To map this refermentation and maturation process for gueuze production, a blend of lambic beers was made and bottled, whereby one of them was produced with the old wheat landrace Zeeuwse Witte. Through the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and high-throughput sequencing of bacterial and fungal amplicons, in combination with metabolite target analysis, new insights into gueuze production were obtained. During the initial stages of refermentation, the conditions in the bottles were similar to those encountered during the maturation phase of lambic beer productions in wooden barrels, which was also reflected microbiologically (presence of Brettanomyces species, Pediococcus damnosus, and Acetobacter lambici) and biochemically (ethanol, higher alcohols, lactic acid, acetic acid, volatile phenolic compounds, and ethyl esters). However, after a few weeks of maturation, a switch from a favorable environment to one with nutrient and dissolved oxygen depletion resulted in several changes. Concerning the microbiology, a sequential prevalence of three lactic acid bacterial species occurred, namely, P. damnosus, Lentilactobacillus buchneri, and Lactobacillus acetotolerans, while the diversity of the yeasts decreased. Concerning the metabolites produced, mainly those of the Brettanomyces yeasts determined the metabolic profiles encountered during later stages of the gueuze production.IMPORTANCEGueuze beers are the result of a refermentation and maturation process of a blend of lambic beers carried out in bottles. These gueuze beers are known to have a long shelf life, and their quality typically varies over time. However, knowledge about gueuze production in bottles is scarce. The present study provided more insights into the varying microbial and metabolite composition of gueuze beers during the first 2 years of this refermentation and maturation process. This will allow gueuze producers to gain more information about the influence of the refermentation and maturation time on their beers. These insights can also be used by gueuze producers to better inform their customers about the quality of young and old gueuze beers.


Assuntos
Cerveja , Brettanomyces , Cerveja/microbiologia , Fermentação , Etanol/análise , Ácido Láctico
8.
Drug Alcohol Depend ; 257: 111137, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460325

RESUMO

BACKGROUND: There is increasing interest in understanding the impact of non-medical cannabis legalization on use of other substances, especially alcohol. Evidence on whether cannabis is a substitute or complement for alcohol is both mixed and limited. This study provides the first quasi-experimental evidence on the impact of Canada's legalization of non-medical cannabis on beer and spirits sales. METHODS: We used the interrupted time series design and monthly data on beer sales between January 2012 and February 2020 and spirits sales between January 2016 and February 2020 across Canada to investigate changes in beer and spirits sales following Canada's cannabis legalization in October 2018. We examined changes in total sales, nationally and in individual provinces, as well as changes in sales of bottled, canned and kegged beer. RESULTS: Canada-wide beer sales fell by 96 hectoliters per 100,000 population (p=0.011) immediately after non-medical cannabis legalization and by 4 hectoliters per 100,000 population (p>0.05) each month thereafter for an average monthly reduction of 136 hectoliters per 100,000 population (p<0.001) post-legalization. However, the legalization was associated with no change in spirits sales. Beer sales reduced in all provinces except the Atlantic provinces. By beer type, the legalization was associated with declines in sales of canned and kegged beer but there was no reduction in sales of bottled beer. CONCLUSIONS: Non-medical cannabis legalization was associated with a decline in beer sales in Canada, suggesting substitution of non-medical cannabis for beer. However, there was no change in spirits sales following the legalization.


Assuntos
Cannabis , Humanos , Bebidas Alcoólicas , Etanol , Canadá/epidemiologia , Cerveja , Legislação de Medicamentos
9.
Environ Int ; 186: 108598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531236

RESUMO

A pH-responsive colorimetric method based on dual-enzyme catalysis for rapid and facile detection and quantification of nanoPET at environment-dependent concentration is proposed. The nanoPET was hydrolyzed by the synergistic catalysis of cutinase and lipase to terephthalic acid which can be sensitive detected using bromocresol purple as the indicator. The color changed from purple to bright yellow as the nanoPET detection concentration increased from 0 mg/mL to 2 mg/mL which can be detected by UV-Vis. This naked-eye method has a high sensitivity for nanoPET detection with the visual detection cutoff of 31.00 µg/mL, and has a good linearity in the range of 0 âˆ¼ 1 mg/mL with LOD of 22.84 µg/mL. The reliability of this method is verified in the detection of nanoPET in lake water and beer samples, with an average recovery of 87.1 %. The as-developed dual-enzyme colorimetric chemosensor holds promising potential as a robust and effective platform for the sensitive detection of nanoPET.


Assuntos
Colorimetria , Lagos , Ácidos Ftálicos , Colorimetria/métodos , Concentração de Íons de Hidrogênio , Lagos/química , Ácidos Ftálicos/análise , Lipase/metabolismo , Cerveja/análise , Catálise
10.
J Agric Food Chem ; 72(14): 7618-7628, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38538519

RESUMO

Beer has over 600 flavor compounds and creates a positive tasting experience with acceptable sensory properties, which are essential for the best consumer experience. Spontaneous and mixed-culture fermentation beers, generally classified as sour beers, are gaining popularity compared to typical lager or ale styles, which have dominated in the USA for the last few decades. Unique and acceptable flavor compounds characterize sour beers, but some unfavorable aspects appear in conjunction. One such unfavorable flavor is called "mousy". This description is usually labeled as an unpleasant odor, identifying spoilage of fermented food and beverages. It is related as having the odor of mouse urine, cereal, corn tortilla chips, or freshly baked sour bread. The main compounds responsible for it are N-heterocyclic compounds: 2-acetyltetrahydropyridine, 2-acetyl-1-pyrroline, and 2-ethyltetrahydropyridine. The most common beverages associated with mousy off-flavor are identified in wines, sour beers, other grain-based beverages, and kombucha, which may contain heterofermentative lactic acid bacteria, acetic acid bacteria, and/or yeast/fungus cultures. In particular, the fungal species Brettanomyces bruxellensis are associated with mousy-off flavor occurrence in fermented beverages matrices. However, many factors for N-heterocycle formation are not well-understood. Currently, the research and development of mixed-cultured beer and non/low alcohol beverages (NABLAB) has increased to obtain the highest quality, sensory, functionality, and most notably safety standards, and also to meet consumers' demand for a balanced sourness in these beverages. This paper introduces mousy off-flavor expression in beers and beverages, which occurs in spontaneous or mixed-culture fermentations, with a focus on sour beers due to common inconsistency aspects in fermentation. We discuss and suggest possible pathways of mousy off-flavor development in the beer matrix, which also apply to other fermented beverages, including non/low alcohol drinks, e.g., kombucha and low/nonalcohol beers. Some precautions and modifications may prevent the occurrence of these off-flavor compounds in the beverage matrix: improving raw material quality, adjusting brewing processes, and using specific strains of yeast and bacteria that are less likely to produce the off-flavor. Conceivably, it is clear that spontaneous and mixed culture fermentation is gaining popularity in industrial, craft, and home brewing. The review discusses important elements to identify and understand metabolic pathways, following the prevention of spoilage targeted to off-flavor compounds development in beers and NABLABs.


Assuntos
Cerveja , Lactobacillales , Bebidas Alcoólicas , Bactérias , Cerveja/análise , Fermentação , Saccharomyces cerevisiae/metabolismo , Vinho/análise
11.
Food Microbiol ; 120: 104479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431325

RESUMO

Saccharomyces pastorianus, hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus, were generally regarded as authentic lager beer yeasts. In recent years, with more new findings of other Saccharomyces genus hybrids, yeasts used in lager beer brewing have been proved much more complicated than previous cognition. In this study, we analyzed the different fermentation characteristics of 54 yeast strains used for lager brewing in normal and very high gravity brewing based on group classification. The difference between Group Ⅰ and Group Ⅱ lager yeasts were more striking in very high gravity brewing. However, during our research progress, we realized that some yeasts used in this study were actually hybrids of S. cerevisiae and Saccharomyces kudriavzevii. Features of these hybrids could be beneficial to very high gravity brewing. We further discussed about the mechanism behind their outstanding characteristics and the reason why group classification methods of lager beer yeasts had limitations. Hybridization in yeasts is constantly getting richer. Lager yeasts could have more possibilities based on better understandings of their genetic background and roles of other Saccharomyces genus hybrids. Their heterosis shed light on innovation in brewing and other diverse fermentation industries.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Fermentação , Saccharomyces/genética , Cerveja
12.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398596

RESUMO

In recent years, there has been a significant decline in interest in high-alcohol beers, while interest in low- and non-alcohol beers is growing. The aim of this study was to investigate the influence of the addition of coriander seeds at various stages of the production of low-alcohol wheat beer (mashing, boiling, and fermentation). The presented article uses biological methods to produce low-alcohol beer. For this purpose, first, the mashing process was modified (breaking 44 °C for 20 min, followed by 75 °C for 60 min). The chemical composition and aroma components of the obtained beers were determined using various chromatographic methods (HPLC, GC-MS, and GC-O). Differences were found between the aroma components depending on the stage of production at which the coriander seeds were added. Beers with the addition of coriander seeds at the fermentation stage had the highest terpene content (linalool, camphor, trans-linalool oxide, and γ-terpinene) and boiling (myrcene, limonene, citronellol, and geraniol). The least desirable process is the addition of coriander seeds at the mashing stage due to the lowest content of volatile compounds. Additionally, beers with the addition of coriander seeds for fermentation were characterized by a higher content of antioxidant compounds. This proves that the addition of coriander seeds during beer production could improve the fermentation process and modify the quality of the obtaining beer.


Assuntos
Cerveja , Coriandrum , Cerveja/análise , Triticum/química , Coriandrum/metabolismo , Antioxidantes/análise , Sementes/química , Fermentação
13.
J Am Soc Mass Spectrom ; 35(4): 746-755, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422384

RESUMO

Hops (Humulus lupulus L.) are essential raw materials for beer brewing, and the major contributors to beer bitterness are isohumulones (iso-α-acids) and humulinones. In recent years, many breweries have focused on the production of hop-forward beer styles by adding hops after or during the cold fermentation stage, which will tend to release humulinones or other hop-derived bitter compounds. In this study, a LC-MS/MS method was developed for quantification of 60 hop-derived bitter compounds in 25 min. Reverse-phase chromatography with an alkaline methanol/acetonitrile (70:30) mobile phase was used for the separation. The quantitative range was 0.053-3912 ng/mL with correlation coefficient r > 0.99, and the LOQ were 0.26 and 0.053 ng/mL for iso-α-acids and humulinones. Precision (RSD < 5.0%) and accuracy (recovery 86.3%-118.1%) were both satisfactory. The abundance of hop-derived bitter compounds in the dry-hopped beer (Double-India Pale Ale) and the nondry-hopped beer (Vienna Lager) were monitored throughout the fermentation and storage stages, and the formation of oxidation and cyclization products showed difference profiles between these two beers. The quantification results reveal how hop-derived bitter compounds change throughout the brewing process, as well as the influence of hops and brewing techniques on beer bitterness.


Assuntos
Cerveja , Humulus , Cromatografia Líquida , Cerveja/análise , Humulus/química , 60705 , Espectrometria de Massas em Tandem , Ácidos/química
14.
Int J Food Microbiol ; 415: 110630, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401380

RESUMO

Craft brewing is continually gaining popularity in the United States. Craft brewers are committed to producing a wide variety of products and have a vested interest in product quality. Therefore, these brewers have the expectation that the beer poured at the tap will match the quality product that left the brewery. The presence of biofilm in draught lines is hypothesized as a contributing factor when this expectation is not achieved. Clean in place strategies based on the Sinner's Circle of Cleaning are used to remediate organic and inorganic accumulation in beer draught lines, including controlling biofilm accumulation. A study was conducted to determine if repeated exposure to chemical cleaning of vinyl beer tubing impacted biofilm growth, kill/removal, and subsequent regrowth of a mixed species biofilm. The tubing was conditioned to simulate one, two, and five years of use. The data collected demonstrates a clear trend between simulated age of the tubing and biofilm accumulation on the surface. Bacterial log densities ranged from 5.6 Log10(CFU/cm2) for the new tubing to 6.6 Log10(CFU/cm2) for tubing aged to simulate five years of use. The counts for the yeast were similar. Caustic cleaning of the tubing, regardless of starting biofilm coverage, left less than 2.75 Log10(CFU/cm2) viable bacteria and yeast cells remaining on the tubing surface. This demonstrated the effectiveness of the caustic at controlling biofilm accumulation in the simulated beer draught line. The biofilm that accumulated in the five-year aged tubing was able to recover more quickly, reaching 3.6 Log10(CFU/cm2) within 24 h indicating the treatment did not fully eradicate the biofilm, suggesting that the strong chemistry used in this study would cease to be as effective over time.


Assuntos
Cerveja , Cáusticos , Saccharomyces cerevisiae , Cáusticos/farmacologia , Biofilmes , Bactérias
15.
Int. microbiol ; 27(1): 143-154, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-230250

RESUMO

The microbiota during pit mud fermentation is a crucial factor in Baijiu brewing since it determines the yield and flavor. However, the impact of the microbial community during the initial fermentation stage on Baijiu quality remains uncertain. Herein, high-throughput sequencing was employed to investigate the microbial diversities and distribution during Baijiu fermentation in individual pit mud workshops at both initial and late stages. During the initial fermentation stage, the bacterial community exerted a more pronounced effect on Baijiu quality than the fungal community. And the high-yield pit mud workshop exhibited lower richness and evenness, as well as greater Bray-Curtis dissimilarity during Baijiu fermentation. Lactobacillus was the dominant genus and biomarker in high-yield pit mud, and it constituted the only genus within the bacterial association network during the late fermentation stage. Fungal communities tended to maintain a simple association network with selected core species. Based on the correlation network, Rhizopus and Trichosporon were identified as biomarkers in Baijiu fermentation process. Together, Lactobacillus and Rhizopus could serve as bio-indicators for Baijiu quality during the initial fermentation stage. Therefore, these findings provided novel insights into microbiota interactions during fermentation and the impact of initial microbiota on final Baijiu quality.(AU)


Assuntos
Humanos , Cerveja/microbiologia , Bebidas Alcoólicas/microbiologia , Fermentação , Microbiota , Bactérias , Biomarcadores , Microbiologia , Técnicas Microbiológicas , Bebidas Alcoólicas/análise
16.
Water Sci Technol ; 89(3): 548-561, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358488

RESUMO

The goal of this study was to unravel the impact of high and low temperatures (T) on glycogen-accumulating microorganisms (GAOs) which were stimulated in an aerobic granular sludge plant fed with industrial wastewater, which is derived from the cleaning of trucks transporting chocolate and beer. Among GAOs, Candidatus Competibacter (Ca. Competibacter) was the most abundant. The long-term impact on (1) anaerobic dissolved organic carbon (DOC) uptake, (2) sludge morphology, and (3) microbial community composition was investigated. In addition, the short-term impact of T changes on the anaerobic uptake rate was evaluated. High T (above 38 °C) and low T (below 11 °C) had a negative impact on the relative read abundance of Ca. Competibacter and the anaerobic DOC uptake. Nevertheless, the carbon removal efficiency and the settleability of the biomass were not affected. Denitrifiers such as Thauera and Zoogloea were promoted over Ca. Competibacter under high T and low T, respectively, indicating their positive contribution to granulation maintenance.


Assuntos
Esgotos , Águas Residuárias , Temperatura , Cerveja , Biomassa , Matéria Orgânica Dissolvida
17.
Biotechnol Appl Biochem ; 71(2): 460-476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212282

RESUMO

Beer is a beverage that contains gluten and cannot be consumed by people with celiac disease. In this context, the enzyme prolyl endoprotease (PEP) can be used to reduce the gluten content in beer. The present study aimed to produce the PEP from Aspergillus sp. FSDE 16 using solid-state fermentation with 5 conditions and comparing with a similar commercial enzyme produced from Aspergillus niger in the production of a gluten-free beer. The results of the performed cultures showed that during the culture, the most increased protease activity (54.46 U/mL) occurred on the 4th day. In contrast, for PEP, the highest activity (0.0356 U/mL) was obtained on the 3rd day of culture in condition. Regarding beer production, cell growth, pH, and total soluble solids showed similar behavior over the 7 days for beers produced without enzyme addition or with the addition of commercial enzyme and with the addition of the enzyme extract produced. The addition of the enzyme and the enzyme extract did not promote changes, and all the beers produced showed similar and satisfactory results, with acid pH between 4 and 5, total soluble solids ranging from 4.80 to 5.05, alcohol content ranging from 2.83% to 3.08%, and all beers having a dark character with deep amber and light copper color. Gluten removal was effectively using the commercial enzyme and the enzyme produced according to condition (v) reaching gluten concentrations equal to 17 ± 5.31 and 21.19 ± 11.28 ppm, respectively. In this way, the production of the enzyme by SSF and its application in the removal of gluten in beer was efficient.


Assuntos
Cerveja , Serina Endopeptidases , Humanos , Cerveja/análise , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Prolil Oligopeptidases , Fermentação , Glutens/análise , Glutens/metabolismo , Aspergillus niger , Extratos Vegetais
18.
Food Chem ; 441: 138387, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38211478

RESUMO

This study was aimed to unravel the effect of raw materials (barley and wheat), wheat concentration (0, 25, 40, and 100 %), wheat species (common and durum), beer style (Blanche and Weiss), and yeast (US-05 and WB-06) on the chemical composition, volatiles, and sensory profile of wheat craft beers by using a multivariate statistical approach. Beer samples were analysed for their composition, volatiles and sensory profile and data were processed using unsupervised multivariate analyses, PLS regression and a multi-omics approach using multi-block PLS-DA. Multi-block variable sparsification was used as an embedded dimension reduction step. The adopted multi-omics approach permitted to correctly classify beers with different styles and wheat concentration, and to accurate classify (95 % accuracy) beers according to yeast type. Wheat species was of lower importance since it permitted a classification with 49 % accuracy which increased to 74 % in Blanche beers, thus suggesting that malting flattened differences determined by wheat species.


Assuntos
Saccharomyces cerevisiae , Fermento Seco , Cerveja/análise , Triticum , Multiômica
19.
Environ Health Perspect ; 132(1): 16001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241192

RESUMO

BACKGROUND: The association between alcohol and certain cancers is well established, yet beyond ethanol and its metabolite acetaldehyde, little is known about the presence of other carcinogenic compounds in alcoholic beverages, including polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (a Group I carcinogen). OBJECTIVES: We summarized the published literature on PAH levels in alcoholic beverages to identify potential gaps in knowledge to inform future research. METHODS: Medline and Scopus were searched for primary research published from January 1966 to November 2023 that quantified PAH levels among various types of alcoholic beverages, including whisky, rum, brandy, gin, vodka, wine, and beer. Studies that were not primary literature were excluded; only studies that quantified PAH content in the specified alcoholic beverages were included. RESULTS: Ten studies published from 1966 to 2019 met the criteria for review. Other than beverage type, no publication reported selection criteria for their samples of tested alcohol products. Studies used a variety of analytical methods to detect PAHs. Of the 10 studies, 7 were published after 2000, and 6 assessed <20 products. Of the studies, 7 examined spirits; 3, beer; and 4, wines. Benzo[a]pyrene was most prevalent among spirit products, particularly whisky, with values generally exceeding acceptable levels for drinking water. Some beer and wine products also contained PAHs, albeit at lower levels and less frequently than spirit products. DISCUSSION: PAHs are found in some alcohol products and appear to vary by beverage type. However, there is an incomplete understanding of their presence and levels among large, representative samples from the range of currently available alcohol products. Addressing this gap could improve understanding of alcohol-cancer relationships and may have important implications for public health and the regulation of alcohol products. In addition, novel methods, such as direct mass spectroscopy, may facilitate more thorough testing of samples to further investigate this relationship. https://doi.org/10.1289/EHP13506.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Vinho , Benzo(a)pireno , Bebidas Alcoólicas/análise , Cerveja/análise , Vinho/análise , Etanol/metabolismo , Carcinógenos
20.
Sci Rep ; 14(1): 504, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177258

RESUMO

The aim of this study was to analyze whether it is possible to brew beer without using cereals so that the produced beverage could be easily accessible for the population suffering from celiac disease and other gluten-related disorders. Green lentil seeds were malted and then mashed using a congress mashing procedure to assess their advantages and disadvantages in the brewing process. Based on the congress mashing procedure, the mashing process needed to produce beer was developed, and beers were produced from the lentil malts germinated during malting for 96 h, 120 h and 144 h. It was possible to produce beers from the lentil malts; however, they were characterized by a lower alcohol content, lower degree of attenuation and some discrepancies between the concentrations of various volatiles (such as acetaldehyde, ethyl acetate, and 1-propanol) compared to the control beer produced from barley malt.


Assuntos
Hordeum , Lens (Planta) , Cerveja/análise , Plântula/química , Glutens/análise , Grão Comestível/química , Hordeum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...